Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011728, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37856551

RESUMO

Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Pandemias , Jamaica , Linfócitos T Reguladores
2.
Nat Microbiol ; 8(6): 1108-1122, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142773

RESUMO

Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.


Assuntos
Quirópteros , Morbillivirus , Animais , Chlorocebus aethiops , Humanos , Células Vero , Zoonoses , Morbillivirus/genética , Linhagem Celular
3.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36824814

RESUMO

Insectivorous Old World horseshoe bats ( Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats ( Rousettus aegyptiacus ) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats ( Eptesicus fuscus ) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats ( Artibeus jamaicensis ) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4 + helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptibility to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease. Author Summary: Bats are reservoir hosts of many viruses that infect humans, yet little is known about how they host these viruses, principally because of a lack of relevant and susceptible bat experimental infection models. Although SARS-CoV-2 originated in bats, no robust infection models of bats have been established. We determined that Jamaican fruit bats are poorly susceptible to SARS-CoV-2; however, their lungs can be transduced with human ACE2, which renders them susceptible to SARS-CoV-2. Despite robust infection of the lungs and diminishment of pulmonary cellularity, the bats showed no overt signs of disease and cleared the infection after two weeks. Despite clearance of infection, only low-titer antibody responses occurred and only a single bat made neutralizing antibody. Assessment of the CD4 + helper T cell response showed that activated cells expressed the regulatory T cell cytokines IL-10 and TGFß that may have tempered pulmonary inflammation.

4.
Res Sq ; 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34611656

RESUMO

Bats are significant reservoir hosts for many viruses with zoonotic potential1. SARS-CoV-2, Ebola virus, and Nipah virus are examples of such viruses that have caused deadly epidemics and pandemics when spilled over from bats into human and animal populations2,3. Careful surveillance of viruses in bats is critical for identifying potential zoonotic pathogens. However, metagenomic surveys in bats often do not result in full-length viral sequences that can be used to regenerate such viruses for targeted characterization4. Here, we identify and characterize a novel morbillivirus from a vespertilionid bat species (Myotis riparius) in Brazil, which we term myotis bat morbillivirus (MBaMV). There are 7 species of morbilliviruses including measles virus (MeV), canine distemper virus (CDV) and rinderpest virus (RPV)5. All morbilliviruses cause severe disease in their natural hosts6-10, and pathogenicity is largely determined by species specific expression of canonical morbillivirus receptors, CD150/SLAMF111 and NECTIN412. MBaMV used Myotis spp CD150 much better than human and dog CD150 in fusion assays. We confirmed this using live MBaMV that was rescued by reverse genetics. Surprisingly, MBaMV replicated efficiently in primary human myeloid but not lymphoid cells. Furthermore, MBaMV replicated in human epithelial cells and used human NECTIN4 almost as well as MeV. Our results demonstrate the unusual ability of MBaMV to infect and replicate in some human cells that are critical for MeV pathogenesis and transmission. This raises the specter of zoonotic transmission of a bat morbillivirus.

5.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010360

RESUMO

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Peromyscus/virologia , Doenças dos Roedores/transmissão , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Modelos Animais de Doenças , Reservatórios de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
6.
bioRxiv ; 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33024962

RESUMO

The emergence of COVID-19 has led to a pandemic that has caused millions of cases of disease, variable morbidity and hundreds of thousands of deaths. Currently, only remdesivir and dexamethasone have demonstrated limited efficacy, only slightly reducing disease burden, thus novel approaches for clinical management of COVID-19 are needed. We identified a panel of human monoclonal antibody clones from a yeast display library with specificity to the SARS-CoV-2 spike protein receptor binding domain that neutralized the virus in vitro . Administration of the lead antibody clone to Syrian hamsters challenged with SARS-CoV-2 significantly reduced viral load and histopathology score in the lungs. Moreover, the antibody interrupted monocyte infiltration into the lungs, which may have contributed to the reduction of disease severity by limiting immunopathological exacerbation. The use of this antibody could provide an important therapy for treatment of COVID-19 patients.

7.
bioRxiv ; 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32793912

RESUMO

Coronavirus disease-19 (COVID-19) emerged in November, 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and likely underwent a recombination event in an intermediate host prior to entry into human populations. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 14 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood brain barrier. Despite this, no conspicuous signs of disease were observed and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, notably IFNα, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources indicated the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 pathogenesis, and that they have the potential to serve as secondary reservoir hosts that could lead to periodic outbreaks of COVID-19 in North America.

8.
Front Immunol ; 11: 614256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391285

RESUMO

The emergence of COVID-19 has led to a pandemic that has caused millions of cases of disease, variable morbidity and hundreds of thousands of deaths. Currently, only remdesivir and dexamethasone have demonstrated limited efficacy, only slightly reducing disease burden, thus novel approaches for clinical management of COVID-19 are needed. We identified a panel of human monoclonal antibody clones from a yeast display library with specificity to the SARS-CoV-2 spike protein receptor binding domain that neutralized the virus in vitro. Administration of the lead antibody clone to Syrian hamsters challenged with SARS-CoV-2 significantly reduced viral load and histopathology score in the lungs. Moreover, the antibody interrupted monocyte infiltration into the lungs, which may have contributed to the reduction of disease severity by limiting immunopathological exacerbation. The use of this antibody could provide an important therapy for treatment of COVID-19 patients.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Imunoglobulina G , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19/sangue , COVID-19/imunologia , Chlorocebus aethiops , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Masculino , Mesocricetus , Índice de Gravidade de Doença , Células Vero , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia
9.
Nat Microbiol ; 4(12): 2298-2309, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527796

RESUMO

Major histocompatibility complex class II (MHC-II) molecules of multiple species function as cell-entry receptors for the haemagglutinin-like H18 protein of the bat H18N11 influenza A virus, enabling tropism of the viruses in a potentially broad range of vertebrates. However, the function of the neuraminidase-like N11 protein is unknown because it is dispensable for viral infection or the release of H18-pseudotyped viruses. Here, we show that infection of mammalian cells with wild-type H18N11 leads to the emergence of mutant viruses that lack the N11 ectodomain and acquired mutations in H18. An infectious clone of one such mutant virus, designated rP11, appeared to be genetically stable in mice and replicated to higher titres in mice and cell culture compared with wild-type H18N11. In ferrets, rP11 antigen and RNA were detected at low levels in various tissues, including the tonsils, whereas the wild-type virus was not. In Neotropical Jamaican fruit bats, wild-type H18N11 was found in intestinal Peyer's patches and was shed to high concentrations in rectal samples, resulting in viral transmission to naive contact bats. Notably, rP11 also replicated efficiently in bats; however, only restored full-length N11 viruses were transmissible. Our findings suggest that wild-type H18N11 replicates poorly in mice and ferrets and that N11 is a determinant for viral transmission in bats.


Assuntos
Quirópteros/virologia , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/fisiologia , Animais , Linhagem Celular , Furões/virologia , Células HEK293 , Especificidade de Hospedeiro , Humanos , Vírus da Influenza A/patogenicidade , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neuraminidase/química , Neuraminidase/genética , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Receptor de Interferon alfa e beta/genética , Receptores de Interferon/genética , Replicação Viral
10.
PLoS Negl Trop Dis ; 13(2): e0007071, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716104

RESUMO

The emergence of Zika virus (ZIKV) in the New World has led to more than 200,000 human infections. Perinatal infection can cause severe neurological complications, including fetal and neonatal microcephaly, and in adults there is an association with Guillain-Barré syndrome (GBS). ZIKV is transmitted to humans by Aedes sp. mosquitoes, yet little is known about its enzootic cycle in which transmission is thought to occur between arboreal Aedes sp. mosquitos and non-human primates. In the 1950s and '60s, several bat species were shown to be naturally and experimentally susceptible to ZIKV with acute viremia and seroconversion, and some developed neurological disease with viral antigen detected in the brain. Because of ZIKV emergence in the Americas, we sought to determine susceptibility of Jamaican fruit bats (Artibeus jamaicensis), one of the most common bats in the New World. Bats were inoculated with ZIKV PRVABC59 but did not show signs of disease. Bats held to 28 days post-inoculation (PI) had detectable antibody by ELISA and viral RNA was detected by qRT-PCR in the brain, saliva and urine in some of the bats. Immunoreactivity using polyclonal anti-ZIKV antibody was detected in testes, brain, lung and salivary glands plus scrotal skin. Tropism for mononuclear cells, including macrophages/microglia and fibroblasts, was seen in the aforementioned organs in addition to testicular Leydig cells. The virus likely localized to the brain via infection of Iba1+ macrophage/microglial cells. Jamaican fruit bats, therefore, may be a useful animal model for the study of ZIKV infection. This work also raises the possibility that bats may have a role in Zika virus ecology in endemic regions, and that ZIKV may pose a wildlife disease threat to bat populations.


Assuntos
Encéfalo/virologia , Quirópteros/virologia , RNA Viral/isolamento & purificação , Infecção por Zika virus/veterinária , Zika virus/fisiologia , Animais , Masculino , RNA Viral/urina , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...